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I.         Members of the team 
Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of Europe, Middle-east, 

Russia and Central Asia (GFSAD30EUCEARUMECE) was produced by the following team members. Their 

specific role is mentioned. 

 

Ms. Aparna R. Phalke, PhD student at the University of Wisconsin, Madison. She along with her PhD advisor 

Dr. Mutlu Ozdogan led the GFSAD30EUCEARUMECE cropland extent product generation effort. Ms. Phalke 

was instrumental in design, coding, computing, analyzing, and synthesis of the Landsat derived nominal 30-m 

GFSAD30EUCEARUMECE cropland extent product of the Europe, Middle-east, Russia and Central Asia for 

the nominal year 2015. She was also instrumental in writing the manuscripts, ATBD’s, and User documentations. 

 

Dr. Mutlu Ozdogan, Professor at the University of Wisconsin, Madison and Co- Investigator of the GFSAD30 

project. He along with his PhD student Ms. Aparna Phalke generated GFSAD30EUCEARUMECE cropland ex-

tent product. Dr. Ozdogan was instrumental in developing conceptual framework of GFSAD30EUCEARUMECE 

cropland extent product. He made significant contribution in writing the manuscripts, ATBD’s, User documenta-

tions, and providing scientific guidance on the GFSAD30 project. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Principal Investigator 

of the GFSAD30 project. Dr. Thenkabail was instrumental in developing conceptual framework of the GFSAD30 

project. He provided constant guidance to the project team, conducted regular project meetings and workshops, 

and made significant contribution in writing the manuscripts, ATBD’s, User documentations, and providing sci-

entific guidance on the GFSAD30 project. 

 

Dr. Russell G. Congalton, Professor at the University of New Hampshire, led the independent accuracy assess-

ment of the entire GFSAD30 project including GFSAD30EUCEARUMECE 30-m cropland extent product. 

 

Ms. Kamini Yadav, PhD student at the University of New Hampshire was a lead member of the independent 

accuracy assessment team led by Dr. Russell G. Congalton. 

 

Mr. Richard Massey, PhD student at the Northern Arizona University, shared his expertise in cloud computing 

and coding. 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute (BAERI) at 

United States Geological Survey (USGS), joined in the intellectual discussions, provided insights and shared his 

expertise in documentation. 

 

Mr. Justin Poehnelt, former member of the GFSAD30 team, helped initial conceptualization and development 

of the croplands.org website. 

 

Ms. Corryn L. Smith, former member of the GFSAD30 team, helped in releasing the GFSAD30EUCEARU-

MECE cropland extent product on croplands.org website. 
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II.         Historical Context and Background Information 

Monitoring global croplands is imperative for ensuring sustainable water and food security to the people of the 

world in the twenty-first century. However, the currently available cropland products suffer from major limita-

tions such as: (1) The absence of precise spatial location of the cropped areas; (2) The coarse resolution of the 

map products with significant uncertainties in areas, locations, and detail; (3) The uncertainties in differentiating 

irrigated areas from rainfed areas; (4) The absence of crop types and cropping intensities; and/or (5) The absence 

of a dedicated Internet data portal for the dissemination of cropland products. Therefore, our project aims to close 

these gaps through a Global Food Security Support-Analysis Data @ 30-m (GFSAD30) product. This algorithm 

theoretical basis document (ATBD) provides a detailed account of the GFSAD30 cropland extent product for 

Europe, Middle-east, Russia and Central Asia (GFSAD30EUCEARUMECE, Table 1). The document is orga-

nized into four broad sections. Section 1 introduces the rationale of generating the product. Section 2 provides an 

overview and the technical background information and algorithms employed in the generation of the product. 

Section 3 presents and discusses the results. Section 4 describes the validation activities of the product. 

 
Table 1. Basic information of the Global food security support-analysis data @ 30-m cropland extent prod-

uct for the Europe, Middle-east, Russia and Central Asia (GFSAD30EUCEARUMECE). 

Product Name Short Name Spatial Resolution Temporal Resolution 

GFSAD 30-m Cropland 

Extent-Product of Europe, 

Middle-east, Russia and 

Central Asia 

GFSAD30EUCEA-

RUMECE 
30-m nominal 2015 
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III.         Rationale for Development of the Algorithms 
Mapping the precise location of croplands enables the extent and area of agricultural lands to be more effectively 

captured, which is of great importance for managing food production systems and to study their inter-relationships 

with water, geo-political, socio-economic, health, environmental, and ecological issues (Thenkabail et al., 2010). 

Further, accurate development of all higher-level cropland products such as crop watering method (irrigated or 

rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fallow, 

as well as assessment of cropland productivity (i.e., productivity per unit of land), and crop water productivity 

(i.e., productivity per unit of water) are all highly dependent on availability of precise and accurate cropland extent 

maps. Uncertainties associated with cropland extent maps effect the quality of all higher-level cropland products 

reliant on an accurate base map. However, precise and accurate cropland extent maps are currently nonexistent at 

the continental scale at a high spatial resolution (30-m or better). This lack of crop extent maps is particularly true 

for complex, small-holder dominant agricultural systems. By mapping croplands at a high-resolution at the con-

tinental scale, the GFSAD30 project has resolved many of the shortcomings and uncertainties of other cropland 

mapping efforts. 

 

The two most common methods for land-cover mapping over large areas using remote-sensing images are manual 

classification based on visual interpretation and digital per-pixel classification. The former approach delivers 

products of high quality, such as the European CORINE Land Cover maps (Büttner, 2014). Although the human 

capacity for interpreting images is remarkable, visual interpretation is subjective (Lillesand et al., 2014), time-

consuming, and expensive. Digital per-pixel classification has been applied for land-cover mapping since the 

advent of remote sensing and is still widely used in operational programs, such as the 2005 North American Land 

Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as maximum like-

lihood classifier (MLC), neural network classification (NN), decision trees, Random Forests (RF), and Support 

Vector Machines are powerful, and fast classifiers that help differentiate distinct patterns of landscape.  

Both supervised and unsupervised classification approaches are adopted in pixel-based classifiers. However, per-

pixel classification includes several limitations. For example, the pixel’s square shape is arbitrary in relation to 

patchy or continuous land features of interest, and there is significant spectral contamination among neighboring 

pixels. As a result, per-pixel classification often leads to noisy classification outputs – the well-known “salt-and-

pepper” effect. There are other limitations of pixel-based: 1. they fail to fully capture the spatial information of 

high resolution imagery such as from Landsat 30-m imagery, and 2. they often, classify same field (e.g., a corn 

field) into different classes as a result of within field variability. This may often result in a field with a single crop 

(e.g., corn) classified as different crops.  

 

We used the supervised pixel-based random forest (RF) classifier (Pelletier et al., 2016, Tian et al., 2016, Shi and 

Yang, 2015, Huang et al., 2010). A description of how to classify cropland extent of Europe, Middle-east, Russia 

and Central Asia is provided in section 2.3 and its sub-sections (see overview of the methodology in Figure 1). 
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IV.         Algorithm Description 
An overview of the algorithm description provided in Figure 1. The methodology used in this project (Figure 1) 

is briefly described in this paragraph to provide an overview and presented in detail in sub-sequent sections of 

this ATBD document. The process (Figure 1) involved combining 2014 to 2016, 16-day time-series Landsat-7 

and Landsat-8 30-m data along with SRTM 30-m data. The process included several well-designed steps (Figure 

1). First, the data pre-processing for cloud and snow masking performed on Google Earth Engine (GEE). Second, 

seasonal mosaics were created for six seasons in the study area: Season 1 (January-February), Season 2(March-

April), Season 3 (May-June), Season 4 (July-August), Season 5 (September-October) and Season 6 (November- 

December). Such a seasonal mosaic aided in achieving cloud free clear images of the continent. Each seasonal 

mosaic contained 56 bands as listed in Table 5.  Third, reference data generated throughout Europe, Middle-east, 

Russia and Central Asia to train the RF classifier. There are total of 54435 reference samples for this purpose 

(Table 2). Fourth, the results of the pixel-based RF algorithms, post-processed with Kernel filter to obtain the 

composite cropland extent product for Europe, Middle-east, Russia and Central Asia. Fifth, the composite 

cropland extent product of Europe, Middle-east, Russia and Central Asia evaluated for accuracy using 8968 test 

samples. The process was iterated until adequate accuracies were attained. Independent team from University of 

New Hampshire performed accuracy assessment of the developed cropland extent product independently. In this 

process, the validation data was only available to the accuracy assessment team and was hidden from the produc-

tion team. As a result, there were complete independent accuracies. Finally, the GFSAD30EUCEARUMECE 

product was available on croplands.org. 

 

 
Figure 1. Flowchart of mapping methods for Landsat derived cropland extent-product of Europe, Middle-east, 

Russia and Central Asia for the nominal year 2015. 
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a.     Input data 

1.   Reference Croplands Samples 
Reference data are required for both training/testing the machine learning algorithms (see section 2) as well as 

for validating the final products. Over 120,000 reference samples, spread across the world, were collected for this 

project and can be found at the following web site: https://croplands.org/app/data/search . Of these there were 

over 9000 samples for Europe, Middle-east, Russia and Central Asia. 

 

Reference training/testing data collected in the following two sources. First, we generated random samples by 

interpreting sub-meter to 5-meter very high spatial resolution imagery (VHRI) throughout Europe, Middle-east, 

Central Asia and Russia available to us from the National Geospatial Agency (NGA) and Google Earth high 

resolution imageries. Second, ancillary data sources such as ‘Land Use and Coverage Area Frame Survey’ (LU-

CAS) (http://ec.europa.eu/eurostat/web/lucas) by Eurostat. We collected 54435 reference and 8968 validation 

samples (Table 2). The reference samples used to “train” the Random Forest algorithm to separate croplands 

from non-croplands. This required us to keep adding training samples until an optimal classification result ob-

tained (see section 2). The whole set of reference data including primary and secondary data were made available, 

at the following web site: https://croplands.org/app/data/search. 

 

Zones 
Training samples Validation samples 

Cropland Non-cropland Cropland Non-cropland 

1 3430 1795 36 59 

2 4065 1962 202 249 

3 5563 663 217 290 

4 7464 3493 201 325 

5 2253 2677 12 462 

6 4017 4283 55 176 

7 1255 2945 2 370 

8 2732 3482 60 711 

9 148 483 15 1373 

10 432 114 200 370 

11 160 668 24 1232 

12 2 349 0 2327 

Total 54435 8968 

Table 2. Reference samples over Europe, Middle-east, Russia and Central Asia for the nominal year 2015 

 

 

 

 

 

 

 

 

 

 

https://croplands.org/app/data/search
http://ec.europa.eu/eurostat/web/lucas)
https://croplands.org/app/data/search
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2.   Satellite Imagery: Landsat-7 and Landsat-8 
To incorporate crop dynamics across the entire study area which extensively covers Europe, Middle-east, Russia 

and Central Asia was stratified into twelve zones based on expert knowledge, agro-ecological characteristics and 

administrative boundaries (Figure 2).  

 
 

Figure 2. Stratification of the Europe, Middle-east, Russia and Central Asia into twelve distinct zones based on 

agro-ecological characteristics and administrative boundaries. The figure also shows the Landsat data tiles distri-

bution across study area. The Random Forest (RF) supervised machine-learning algorithm used for classification 

of croplands and non-croplands in each of the twelve zones.  

 

Landsat-8 and Landsat-7 time-series multispectral images at the resolution of 30-meter (Irons et al., 2012; Roy et 

al., 2014) for the time period of 2014 to 2016 were used as primary data aiming to provide seamless 30-meter 

data for the entire study area. We processed approximately 160,000 Landsat images with 3351 Landsat tiles spread 

across study area for 2014 to 2016 time period (Table 3 and Table 4).  



 - 10 - DCN 
Version 1.0 

Sensor Time-period Bands Resolution Type 
Data 

Source 

Landsat-7 ETM+ Jan 2014-Dec 2016 

B1 (Blue) 

B2 (Green) 

B3 (Red) 

B4 (Near Infrared) 

B5 (Shortwave Infrared 1) 

B7 (Shortwave Infrared 2) 

NDVI 

NDWI 

30m 

30m 

30m 

30m 

30m 

30m 

30m 

30m 

SR* 
USGS 

 

Landsat-8 OLI Jan 2014-Dec 2016 

B2 (Blue) 

B3 (Green) 

B4 (Red) 

B5 (Near Infrared) 

B6 (Shortwave Infrared 1) 

B7 (Shortwave Infrared 2) 

NDVI 

NDWI 

30m 

30m 

30m 

30m 

30m 

30m 

30m 

30m 

SR USGS  

Shuttle Radar Topography Mission(SRTM) Slope 30m  USGS 

    Note: *SR is the surface reflectance product of the Landsat data and data accessed through Google Earth Engine (GEE) 

 

Table 3. Characteristics of input multi-temporal Landsat data and slope band  

 

   

Zones 
Landsat  Number of Landsat satellite images sensor-wise 

tiles LE7 LC8 LE7 LC8 LE7 LC8 

z1 57 488 713 530 717 535 698 

z2 135 1844 2112 1859 2217 1832 2191 

z3 151 2208 2514 2223 2600 2272 2539 

z4 167 2154 2668 2478 2666 2575 2575 

z5 168 996 1866 1481 1806 1663 1816 

z6 139 2359 2866 2574 2729 2389 2771 

z7 152 1868 3305 2977 3137 2942 3282 

z8 290 3274 5299 4737 5004 4434 5088 

z9 430 892 2054 1460 1959 1530 3006 

z10 183 1499 2330 2000 2198 1697 2212 

z11 513 2401 3656 3274 3905 3218 5372 

z12 966 18 44 28 124 21 4987 

    2014 2015 2016 
 

Table 4. Number of Landsat scenes in the study area with two Landsat sensors (ETM+ and OLI) for 2014 to 2016 

in each zone. 
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In addition to remotely sensed inputs, we used ‘slope’ derived from the Shuttle Radar Topographic Mission 

(SRTM) digital elevation model (DEM) (http://www2.jpl.nasa.gov/srtm/). Topographic features play an im-

portant role in mapping croplands because most of the world's cultivated areas occur on gradual slopes and me-

dium elevations (Jarvis et al., 2008). In order to ensure cloud-free or near-cloud-free wall-to-all coverage, bi -

monthly composites, depending on the cloudiness of the countries\regions, were composed. 30-m mega-file 

data-cubes (MFDC’s) were created as per the following steps leading to 56-band MFDC for Europe, Middle-

east, Russia and Central Asia.  

 

Systematic detail of MFDC composition is given in table 4 described as below: 

The goal of the time-composites was to achieve cloud-free or near cloud-free time wall-to-wall composites over 

the entire study area. The process involved collecting all the Landsat images over study area and composing 

bands by taking 75th percentile value of each pixel of each band. The band stack, and time-periods divided into 

seasons led to formation of MFDC (Table 5). All compositions were performed on the Google Earth Engine 

(GEE) a cloud-based geospatial platform for planetary-scale data analysis (Gorelick et al, 2017). 

 

 

Study area Europe, Middle-east, Russia and Central Asia 

 

Number of seasons 

Six seasons: (Season 1: January-February, Season 2: March-April,    

Season 3: May-June, Season 4: July-August, Season 5: September-

October and Season 6: November-December) 

Number of input bands in mega-

file data cubes (MFDC) 

56 bands: 

1.Six seasons per year NDVI and NDWI bands i.e. NDVI (18 

Bands), NDWI (18 bands) 

2. Slope (1 band) (derived from SRTM DEM) 

3.  Standard Deviation of NDVI, Range of NDVI and Minimum of 

NDVI of overall composite (3 bands)  

4.  Landsat SR B1, B2, B3, B4, B5 and B7 maximum and minimum 

75th percentile of overall composite (12 bands)  

5. NDVI and NDWI max and min 75th percentile of overall compo-

site (4 bands) 

 

Table 5. Data cube of 30-m for the entire study area composited using time-series Landsat data for time-period 

2014 to 2016 and slope derived from STRM elevation data.  

 

 

 

 

 

 

 

 

 

 

 

 



 - 12 - DCN 
Version 1.0 

b.     Theoretical description                                                

1.   Definition of Croplands 
For our Global Food Security-Support Analysis Data project at 30-m (GFSAD30) cropland extent map for Europe, 

Middle-east, Russia and Central Asia (GFSAD30EUCEARUMECE), cropland extent was defined as: “lands cul-

tivated with plants harvested for food, feed, and fiber, including both seasonal crops (e.g., wheat, rice, corn, 

soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, oil palms). Cropland fallow are 

lands uncultivated during a season or a year but are farmlands and are equipped for cultivation, including planta-

tions (e.g., orchards, vineyards, coffee, tea, rubber” (Teluguntla et al., 2015). Cropland extent includes all planted 

crops and fallow lands. Non-croplands include all other land cover classes other than croplands and cropland 

fallow (Figure 3). 

 
Figure 3. Illustration of definition of cropland mapping. Croplands included: (a) standing crop, (b) cropland fal-

lows, and (c) permanent plantation crops. 

 

2.   Algorithms 
The study used pixel-based supervised random forest machine learning algorithm to create the cropland extent 

product. Classification algorithm described in detail below. Study area stratified into twelve separate zones (Fig-

ure 2) to facilitate the optimal classification. 

 

 

c.     Practical description 

1. Random Forest (RF) Algorithm 
The Random Forest classifier is more robust, relatively faster in speed of classification, and easier to implement 

than many other classifiers (Pelletier et al., 2016). The Random Forests classifier uses bootstrap aggregating 

(bagging) to form an ensemble of decision trees (Pelletier et al., 2016) by searching random subspaces from the 

given data (features) and the best splitting of the nodes by minimizing the correlation between the trees.  

All supervised pixel-based classifications such as the Random Forest are heavily dependent on the input training 

samples selected. In order to discriminate croplands under various environments and conditions, the sample size 

of the initial training dataset needs to be large, especially in complex regions. All samples were selected to rep-

resent a 90-m x 90-m polygon. To achieve required quality of cropland extent map, an iterative sample selection 

procedure was implemented with the following steps for training the Random Forest (RF) machine learning al-

gorithm is described below (also see logical flow in Figure 1)： 

 

1. Build the Random Forest classifier on Google Earth Engine (GEE) cloud computing environment using exist-

ing training samples for each of the twelve zones (e.g., Figure 2). Initially we began with a small number of 
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samples and slowly increased the sample size until we reached a high degree of accuracy and the accuracy 

plateaued at certain sample size; 

2. Classify the 30-m seasonal mosaics (Table 4) for each of the twelve zones (Figure 2) using the Random Forest 

algorithm in GEE cloud; 

3. Visual assessment of classification results compared with existing reference maps as well as sub-meter to 5-m 

very high spatial resolution imagery (VHRI). The process was iterated until sufficient correspondence was 

achieved; 

4. Added 'crop' and ‘non-crop’ samples in areas that were not covered using reference data obtained from the sub-

meter to 5-m very high spatial imagery from Google Earth Imagery. For locations where interpretations were 

challenging (fallow-land or abandoned fields), historical Landsat Images and ground data were also used.  

5. Loop step 1-4 by progressively increasing the training dataset until classification becomes stable. 

 

The number of iterations required for the training sample selection is a function of the complexity of the area. In 

this situation, the iterative selection was looped 4~5 times to improve the classification results. 

 

2. Programming and codes 
The pixel-based supervised machine-learning algorithm (RF) coded on Google Earth Engine (GEE) using Python 

Scripts using Application Programming Interface (API). The codes are made available in a zip file and are avail-

able for download along with this ATBD. 

 

3. Results 
The machine learning algorithm (RF), discussed in previous sections, were trained to separate croplands versus 

non-croplands for each of the twelve zones (Figure 2) based on the previously described reference data. The 

random forest classifier then run on the Google Earth Engine (GEE) cloud computing environment using the 

Landsat based data-cube (Table 5) for each of the twelve zones to separate croplands versus non-croplands. The 

process was iterated and knowledge in the algorithms tweaked several times, before producing the final, accurate 

results of croplands versus non-croplands. This process resulted in the global food security-support analysis data 

@ 30-m cropland extent for Europe, Middle-east, Russia and Central Asia (GFSAD30EUCEARUMECE) product 

(Figure 4). This product is publically available through the Land Processes Distributed Active Archive Center 

(LP DAAC). The same dataset is also available for visualization at https://croplands.org/app/map. Full resolution 

of 30-m cropland extent can be visualized in croplands.org by zooming-in to specific areas as illustrated in Figure 

5. For any area in Europe, Middle-east, Russia and Central Asia, croplands can be visualized by zooming into 

specific areas in croplands.org. The background sub-meter to 5-m imagery, available for the continent on the 

Google Earth, helps evaluate the quality of the cropland extent product (“zoom in” and “toggle” cropland “on” 

and “off” to see the sub-meter to 5-m imagery in the background. 
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Figure 4. Cropland extent-product at 30-m for Europe, Middle-east, Russia and Central Asia (GFSAD30EUCEA-

RUMECE). This product is made available for visualization @: croplands.org. The data is downloadable from 

LP DAAC. 
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Figure 5. Visual interpretation of cropland extent product at 30-m for Europe, Middle-east, Russia and Central 

Asia. Green color represents the cropland mask and background is the natural color composite high resolution 

satellite image. 
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4. Cropland areas of Europe, Middle-east, Russia and Central Asia 
Country-wise cropland areas calculated based 30-m crop extent maps from this study are summarized here. Ta-

ble 4 and Table 5 show a country-by-country cropland area statistics of all countries generated from this study 

and compared with several other sources such as the national census data based MIRCA2000 (Stefan Siebert 

and Portmann, personal communication; Portmann, 2010) which were also updated in the year 2015, The Food 

and Agricultural Organization (FAO) of United Nation’s compiled statistics, MODIS 500-m derived cropland 

areas from GRIPC (Salmon et al., 2015), and GIAM-GMRCA (Thenkabail et al., 2009 and Biradar et al., 2009) 

derived cropland areas. Overall as per GFSAD30EUCEARUMECE estimates, total net cropland of Europe, 

Middle-east, Russia and Central Asia is 279.1 Mha, 70 Mha, 155.8 Mha and 76.9 Mha respectively.  

 

 
Figure 6. Scatter plot of country wise areas estimated by GFSAD30EUCEARUMECE and FAO. 

 

On average, the GFSAD30EUCEARUMECE had much higher estimates; higher by about 2-30% relative to sta-

tistical data from MIRCA and FAO (Table 5 and 6). There are several reasons for these significant differences in 

areas between GFSAD30EUCEARUMECE when compared with MIRCA and FAO estimates. These include:  

(i) The ability of the higher spatial resolution 30-m derived croplands GFSAD30EUCEARUMECE map 

to capture fragmented croplands; 

(ii) The ability of the 30-m derived croplands GFSAD30EUCEARUMECE map to account for actual 

areas when compared with sub-pixel areas of lower resolution imagery derived cropland products 

(e.g., GRIPC, GLC); 

(iii) Differences in how cropland data are gathered\estimated\calculated. The 30-m derived cropland 

GFSAD30EUCEARUMECE map provides objective estimates relative to how other statistical data 

were obtained. Statistical data of countries are reported by countries based on a wide range of methods, 

techniques, and data used. For example, FAO compiles the statistics reported by individual countries, 

which are based on national censuses, agricultural samples, questionnaire-based surveys with major 

agricultural producers, and independent evaluations (FAO, 2006 and The World Bank, 2010). Since 
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each country has its own data collection mechanism, differences in data gathering, resource limita-

tions, and lack of objectivity in many countries (due to resource limitations) results in data quality 

issues; 

(iv) Definition issues. Not every country adheres to same definitions of croplands. Our study used the 

TNCA definition to include planted crops along with croplands left fallow as well as permanent crops 

such as plantations (e.g., olive, fruit trees, vineyards, coffee and tea plantations, oil palm plantations 

etc). Many countries use similar definitions while others use different definitions (e.g., leaving out 

cropland fallow).  

(v) Uncertainties inherent in all estimates. One can expect uncertainties in cropland areas maps (e,g., Fig-

ure 6) or areas estimated from different sources (e.g., Table 6 and Table 7) as a result of definitions, 

data used, methods adopted, and reporting mechanisms (e.g., FAO mostly reports official areas re-

ported by the Countries). GFSAD30EUCEARUMECE uncertainties are gauged by the error matrices. 

In GFSAD30EUCEARUMECE uncertainties in cropland estimates mainly arose from three sources: 

(a) aquaculture, (b) green houses, and (c) managed grasslands.  
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Region  Name  Country Name  Land Area1 GFSAD302 MIRCA20143 FAO-Agricultural land 
GIAM-

GMRCA5 
GRIPC20056 

           (without  pasture)4     

Name Name Ha Ha Ha Ha Ha Ha 

Europe  Ukraine 57,971,910 43,375,936 34,483,060 33,392,284 31,285,731 50,085,213 

Europe  Turkey 76,899,209 34,314,153 23,230,840 24,280,464 12,356,748 20,189,904 

Europe  France 54,805,243 31,795,512 19,627,780 19,403,358 20,048,339 40,252,787 

Europe  Spain 49,873,874 31,786,945 18,748,612 17,216,960 18,813,770 20,624,711 
Europe  Germany 34,888,430 19,863,347 12,328,316 12,141,034 11,196,575 22,101,291 

Europe  Poland 30,413,208 19,057,505 14,485,510 12,943,557 14,775,550 21,809,121 

Europe  Italy 29,403,805 17,934,740 9,559,511 9,485,256 9,265,975 17,265,516 
Europe  United Kingdom 24,196,927 15,461,875 6,566,839 6,098,400 5,985,362 9,888,546 

Europe  Romania 22,998,299 13,617,454 10,163,640 9,155,071 9,938,493 16,732,340 

Europe  Belarus 20,288,636 10,655,942 6,266,646 5,659,718 11,052,202 12,705,839 
Europe  Hungary 9,050,078 7,294,849 4,883,556 4,776,758 4,600,188 7,743,140 

Europe  Bulgaria 10,863,931 5,838,245 3,675,656 3,309,740 4,718,322 7,872,550 

Europe  Portugal 9,141,439 5,229,711 2,704,046 1,904,628 3,115,042 2,264,433 
Europe  Ireland 6,889,803 5,148,229 1,150,309 1,093,329 630,766 527,115 

Europe  Serbia 8,745,675 5,083,568 3,434,899 3,594,105 3,119,543 0 

Europe  Azerbaijan 8,258,681 4,947,772 2,518,816 2,102,594 2,234,411 4,033,759 
Europe  Czech Republic 7,721,311 4,740,783 3,154,321 3,255,552 3,586,245 4,986,646 

Europe  Greece 12,891,509 4,636,262 3,814,012 3,697,749 3,665,237 4,918,732 

Europe  Lithuania 6,268,065 3,991,855 3,002,289 2,081,286 2,708,784 5,592,286 

Europe  Sweden 41,053,333 3,449,715 2,600,998 2,641,782 1,124,739 2,101,480 

Europe  Denmark 4,241,546 3,259,391 2,603,932 2,436,450 1,681,824 3,416,587 

Europe  Moldova 3,287,234 2,863,151 2,171,410 2,118,504 1,827,082 3,161,580 
Europe  Austria 8,250,000 2,745,656 1,470,858 1,438,272 1,938,650 2,727,139 

Europe  Latvia 6,213,559 2,663,665 1,907,594 1,173,120 2,053,248 2,760,286 

Europe  Slovakia 4,812,968 2,466,820 1,544,638 1,405,040 1,800,719 2,542,400 
Europe  Croatia 5,603,448 2,347,095 1,594,850 956,800 1,586,883 3,062,561 

Europe  Netherlands 3,375,000 2,234,414 1,040,835 1,090,773 1,434,345 2,321,567 

Europe  Georgia 6,947,368 2,185,454 1,195,715 566,808 925,416 2,797,931 
Europe  Finland 30,210,526 1,944,280 2,256,339 2,261,560 846,455 693,120 

Europe  Bosnia & Herzegovina 5,103,118 1,776,082 1,084,319 1,098,048 1,314,387 2,863,715 

Europe  Belgium 3,031,111 1,676,417 3,230,784 862,048 1,426,221 2,046,939 
Europe  Armenia 2,847,403 1,492,498 661,526 510,414 522,285 1,264,396 

Europe  Estonia 4,231,818 1,408,622 842,763 604,219 1,077,199 1,277,601 

Europe  Switzerland 4,002,625 1,357,409 465,170 430,050 720,372 1,339,537 
Europe  Norway 30,727,273 830,916 691,298 839,592 487,408 267,885 

Europe  Albania 2,736,364 703,638 801,083 698,320 1,088,326 1,868,466 

Europe  Slovenia 2,017,241 674,902 200,578 200,772 542,659 705,434 
Europe  Cyprus 925,926 513,145 171,943 120,750 156,041 253,336 

Europe  Montenegro 1,345,550 218,299 381,028 189,152 374,691 0 

Europe  Luxembourg 258,893 137,439 61,665 64,059 111,041 177,984 
Europe  Liechtenstein 14,778 5,467 4,031 3,228 4,839 5,527 

Europe  San Marino 5,988 5,198 1,959 1,000 3,162 4,697 

Europe  Andorra 46,997 1,196 1,123 1,008 5,776 3,975 

1= total land area is land area excluding area under inland water bodies         
2=current study               
3=Monthly irrigated and rainfed crop areas (MIRCA) around the year derived by Portman et al.       
4=FAO Agricultural land area excluding pasture based on FAO2013 statistics consider nominal 2015       
http://www.fao.org/faostat/en/#data/QC             
5= global croplands derived from Global Irrigated Area Mapping (GIAM) and Global Map of Rainfed Cropland Areas      
(GMRCA) by Thenkabail et al.,2009 and Biradar et al., 2009           
6= Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by Solomon et al.,2015       

 

Table 6. Net cropland areas (NCAs) derived based on 30-m GFSAD30 cropland product and comparison with 

other cropland products for Europe. 

 

 

 

 

 

 

 

 

 

http://www.fao.org/faostat/en/#data/QC
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Region  Name  Country Name  Land Area1 GFSAD302 MIRCA20143 FAO-Agricultural land 
GIAM-

GMRCA5 
GRIPC20056 

           (without pasture)4     

Name Name Ha Ha Ha Ha Ha Ha 

Middle east Syria 18,372,523 6,752,220 4,741,506 5,660,556 1,446,239 2,886,777 

Middle east Saudi Arabia 214,913,259 2,920,610 3,260,511 3,468,700 742,196 289,239 
Middle east Yemen 52,819,820 2,480,329 1,655,154 1,454,024 297,998 341,428 

Middle east Macedonia 2,519,900 864,548 646,760 454,837 865,762 1,742,628 

Middle east Israel 2,170,124 606,876 424,611 382,836 201,470 511,835 
Middle east Jordan 8,913,043 491,087 406,142 282,900 148,266 354,583 

Middle east United Arab Emirates 8,367,647 247,015 394,786 264,016 93,810 7,751 

Middle east Lebanon 1,022,288 240,023 338,571 288,272 151,455 219,125 
Middle east Oman 31,118,644 177,808 126,395 135,864 84,302 30,843 

Middle east West Bank 565,500 116,826 0 0 65,748 0 

Middle east Kuwait 1,776,471 40,747 16,713 14,949 37,333 1,434 
Middle east Qatar 1,160,714 26,897 12,520 15,015 38,509 361 

Middle east Gaza Strip 36,500 22,774 0 0 6,601 11,248 
Middle east Bahrain 77,670 6,099 8,224 3,896 0 89 

Russia  Russia 1,633,037,879 155,799,806 127,482,904 123,516,453 128,675,415 235,890,486 

West Asia Iran 162,802,013 33,063,882 16,644,983 18,969,365 8,133,031 7,358,862 
West Asia Iraq 43,532,338 12,451,749 6,647,068 4,751,250 3,576,735 2,543,489 

West Asia Afghanistan 65,249,570 8,499,171 9,480,926 7,923,190 3,756,220 909,683 

Central Asia Kazakhstan 270,051,813 25,885,023 23,102,226 23,558,240 38,950,704 36,389,615 

Central Asia Uzbekistan 42,573,482 7,789,426 6,051,359 4,663,925 6,423,474 5,861,982 

Central Asia Turkmenistan 46,988,473 3,729,913 2,605,478 1,923,990 2,065,350 1,694,870 

Central Asia Kyrgyzstan 19,164,260 2,159,334 2,094,460 1,348,359 2,691,843 2,580,683 
Central Asia Tajikistan 14,011,799 1,135,755 1,363,955 874,000 1,573,635 1,531,621 

1= total land area is land area excluding area under inland water bodies         

2=current study               

3=Monthly irrigated and rainfed crop areas (MIRCA) around the year derived by Portman et al.       
4=FAO Agricultural land area excluding pasture based on FAO2013 statistics consider nominal 2015       

http://www.fao.org/faostat/en/#data/QC             

5= global croplands derived from Global Irrigated Area Mapping (GIAM) and Global Map of Rainfed Cropland Areas      
(GMRCA) by Thenkabail et al.,2009 and Biradar et al., 2009           

6= Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by Solomon et al.,2015       

 

 

Table 7. Net cropland areas (NCAs) derived based on 30-m GFSAD30 cropland product and comparison with 

other cropland products for Middle-east, Russia and Central Asia. 

 

 

     V.         Calibration Needs/Validation Activities 
  An independent accuracy assessment for the 12 regions and study area as a whole, were performed by our as-

sessment team at the University of New Hampshire. For this assessment, 3000 reference samples that were col-

lected independently of any reference training and testing samples used by the mapping team.   Error matrices 

were generated for each of the twelve zones separately and for the entire study area providing producer’s, user’s, 

and overall accuracies (Story and Congalton, 1986, Congalton, 2015).  

 

For the entire study area, the weighted overall accuracy was 93.8% with producer’s accuracy of 86.5% and user’s 

accuracy of 85.7% (Table 7). When considering all twelve zones, the overall accuracies ranged between 76-100%, 

producer’s accuracies ranged between 64-92%, and user’s accuracies ranged between 54-95% (Table 7). These 

results clearly imply the high level of confidence in differentiating croplands from non-croplands for Europe, 

Middle-east, Russia and Central Asia. 

High producer’s accuracies across zones suggest than few croplands were omitted during the mapping process. 

On the other hand, high user’s accuracies across zones suggest than croplands were rarely mapped (or committed) 

in error. The machine learning algorithms (RF) was optimized to map the maximum extent of croplands. To some 

extent, this decision increases commission errors. In summary, producer’s accuracy 86.5% and user’s accuracy 

85.7% with overall accuracy 91% for entire study area error matrix clearly indicates that croplands have been 

mapped with high accuracy (Table 8) 

 

http://www.fao.org/faostat/en/#data/QC
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Table 8. Independent Accuracy Assessment of 30-m Cropland Extent Map for Europe, Middle-east, Russia and 

Central Asia. Accuracies were assessed for each of the 12 zones as well as for the entire study area. 
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VI.         Constraints and Limitations 
GFSAD30EUCEARUMECE product mapped the croplands of Europe, Middle-east, Russia and Central Asia@ 

nominal 30-m, which is the best-known resolution for cropland mapping over such large areas with 3130 Mha 

lands covering two largest continents of the globe. It also has high levels of accuracies with weighted overall 

accuracies of 93.8%, Producer’s accuracy of 86.5% and user’s accuracy of 85.7%.  

 

A producer’s accuracy of 86.5% for the cropland class means an error of omission of 13.5%. This means 13.5% 

of the continental croplands were missing in the product. User’s accuracy 85.7% for the cropland class for the 

continent means there is an error of commission of 14.3%. This means, 14.3% of non-croplands are mapped as 

croplands. We tweaked the machine learning algorithms (section IV) to maximize capturing as much croplands 

as feasible automatically. In this process, some non-croplands get mapped as croplands as well. This is a preferred 

solution in order not to miss croplands or only to miss them minimally. As a compromise mapping some non-

croplands as croplands becomes unavoidable. 

 

There are numerous issues that cause uncertainties and limitations in cropland extent product. Some of these 

issues are discussed here. First, temporal coverage. 16-day Landsat coverage put together, there is substantial 

temporal coverage. Yet, we were only able to achieve seasonal cloud-free or near cloud-free mosaics of the entire 

study area. This is not surprising given the such a large area involved and frequent cloud (e.g., frequent clouds 

over the United Kingdom, Ireland, Sweden, Norway etc.) or dust across the study area. As a result, if we were to 

have daily coverage over an area (e.g., like MODIS) then it becomes feasible to have more frequent (e.g., monthly 

or bi-monthly composites) temporal coverage of the study area that will help advance cropland mapping at im-

proved accuracies. Second, there is a need for greater understanding of the Landsat-7 and Landsat-8 data on how 

well they are correlated and in efforts to achieve better harmonization of data from two different sensors. Third, 

is the limitation of the reference training and validation data. In this project, we already have large training and 

validation data compared to any previous work as described in various previous sections. Nevertheless, much 

wider and extensive field visits to different parts of the study area will be helpful in better understanding of the 

issues involved and as a result better mapping. For example, slash and burn croplands in the rainforests or agro-

forest driven croplands, helps us in better define, understand, and map croplands. These and a better understanding 

of croplands through field visits as well as understanding of host of other issues (e.g., various types of irrigated 

and rainfed croplands, croplands in desert margins, various types and ages of cropland fallows) all will help 

improve cropland mapping. Greatest difficulties in cropland mapping in Middle-east were in desert margins (e.g., 

Iraq where rainfed agriculture in limited to a very short season when anything will grow), rainforests (e.g., slash 

and burn agriculture), cropland fallows (e.g., whether a fallow is 1 year or 5-year or permanent). These and nu-

merous other issues (e.g., implementing machine learning algorithms and uncertainties inherent in them) will 

continue to be there in cropland mapping over such large areas as Europe, Middle-east, Russia and Central Asia. 

Nevertheless, advances made in this study is significant, especially in developing a nominal 30-m cropland extent 

of the study area at very good accuracies. 

 
 

VII. Publications 
The following publications are related to the development of the above croplands products:  

 

1. Peer-reviewed publications within GFSAD project 
Congalton, R.G., Gu, J., Yadav, K., Thenkabail, P.S., and Ozdogan, M. 2014. Global Land Cover Mapping: A 

Review and Uncertainty Analysis. Remote Sensing Open Access Journal. Remote Sens. 2014, 6, 12070-

12093; http://dx.doi.org/10.3390/rs61212070. 

 

http://dx.doi.org/10.3390/rs61212070
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Congalton, R.G, 2015. Assessing Positional and Thematic Accuracies of Maps Generated from Remotely Sensed 

Data. Chapter 29, In Thenkabail, P.S., (Editor-in-Chief), 2015. "Remote Sensing Handbook" Volume I: Volume 

I: Data Characterization, Classification, and Accuracies: Advances of Last 50 Years and a Vision for the Future. 

Taylor and Francis Inc.\CRC Press, Boca Raton, London, New York. Pp. 900+. In Thenkabail, P.S., (Editor-in-

Chief), 2015. "Remote Sensing Handbook" Volume I: ): Remotely Sensed Data Characterization, Classifica-

tion, and Accuracies. Taylor and Francis Inc.\CRC Press, Boca Raton, London, New York. ISBN 

9781482217865 - CAT# K22125. Print ISBN: 978-1-4822-1786-5; eBook ISBN: 978-1-4822-1787-2. Pp. 678.  

 

Gumma, M.K., Thenkabail, P.S.,Teluguntla, P., Rao, M.N., Mohammed, I.A., and Whitbread, A.M. 2016. Map-

ping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m 

time-series data. International Journal of Digital Earth, http://dx.doi.org/10.1080/17538947.2016.1168489 

 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., Sánchez Meador, A.J. 

2017. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types, Remote Sensing of 

Environment, Volume 198, 1 September 2017, Pages 490-503, ISSN 0034-4257, 

https://doi.org/10.1016/j.rse.2017.06.033. 

 

Phalke, A. R., Ozdogan, M., Thenkabail, P. S., Congalton, R. G., Yadav, K., & Massey, R. et al. (2017). A 

Nominal 30-m Cropland Extent and Areas of Europe, Middle-east, Russia and Central Asia for the Year 2015 by 

Landsat Data using Random Forest Algorithms on Google Earth Engine Cloud. (in preparation). 

 

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., Poehnelt, J., Yadav, 

K., Rao, M., and Massey, R. 2017. Spectral matching techniques (SMTs) and automated cropland classification 

algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data, 

International Journal of Digital Earth.  

DOI:10.1080/17538947.2016.1267269.IP-074181, http://dx.doi.org/10.1080/17538947.2016.1267269. 

 

Teluguntla, P., Thenkabail, P., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Congalton, R., Yadav, 

K., 2015. CHAPTER 6 - Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived 

from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future 

Possibilities, in: Thenkabail, P.S. (Ed.), Remote Sensing Handbook (Volume II): Land Resources Monitoring, 

Modeling, and Mapping with Remote Sensing. CRC Press, Boca Raton, London, New York., pp. 131–160. Link. 

 

Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K. 
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Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K., Thau, D. 

2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing, ISPRS 
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2. Web sites and Data portals:  
http://croplands.org (30-m global croplands visualization tool) 
http://geography.wr.usgs.gov/science/croplands/index.html (GFSAD30 web portal and dissemination) 

http://geography.wr.usgs.gov/science/croplands/products.html#LPDAAC (dissemination on LP DAAC) 

http://geography.wr.usgs.gov/science/croplands/products.html (global croplands on Google Earth Engine) 

croplands.org (crowdsourcing global croplands data) 

http://dx.doi.org/10.1080/17538947.2016.1168489
https://geography.wr.usgs.gov/science/croplands/docs/Teluguntla-thenkabail-xiong-etal-global-croplands-mask.pdf
https://doi.org/10.1016/j.isprsjprs.2017.01.019
http://geography.wr.usgs.gov/science/croplands/index.html
http://geography.wr.usgs.gov/science/croplands/products.html#LPDAAC
http://geography.wr.usgs.gov/science/croplands/products.html
http://www.croplands.org/
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